If you're old enough, you may still have a box of cassette or VHS tapes lying around. These storage devices were popular in the 1970s and 80s, but have since fallen into disuse, replaced by CDs and other digital media.

Now, researchers are taking a new look at chromium oxides, magnetic chemical compounds once used to coat the surfaces of such tapes.

In a new study, Scott Sayres and Jacob Garcia, researchers at ASU's Biodesign Center for Applied Structural Discovery and ASU's School of Molecular Sciences, use mass spectroscopy and ultrafast laser pulses to interrogate chromium oxides in unprecedented detail.

"Chromium oxides are known to have really exciting magnetic and ," says Sayres. "They're a very unique material that's poorly understood at the molecular level." One of the surprising findings of the current study is that adding oxygen atoms to chromium compounds increases their metallic properties and these alterations can be very precisely controlled.

The results open the door to a new breed of electronics that may soon reach the smallest possible scale, permitting the design of tunable, molecular-sized components that could vastly increase processing and storage capacities in new devices.

The findings, which appear in the current issue of the Journal of the American Chemical Society (JACS), describe the behavior of clusters of chromium atoms, which can be fine-tuned to alter their , variously behaving as wire-like conductors of electricity, semiconductors or insulators, depending on the number of oxygen atoms present.

To read more, click here.