Researchers from the University of Geneva (UNIGE) broke a new record by storing a qubit in a crystal for 20 milliseconds, a press statement reveals.

The new record in quantum storage could help to develop long-distance ultra-secure quantum telecommunications networks.

Quantum physics has enabled a whole host of innovations, including computers, smartphones, and GPS. The field is also showing great potential by opening new avenues of research for quantum computing and cryptography, with the latter potentially allowing coded messages to be sent over quantum communication networks.

One obstacle stands in the way. After traveling a few hundred kilometers within an optical fiber cable, the photons that carry the qubits (quantum bits) storing the information disappear, ceasing the communication.

The researchers from UNIGE set out to build "repeaters," a type of "relay" partially based on quantum memory. Their research is published in the journal npj Quantum Information.

 

Superposition — referred to by Albert Einstein as "spooky action at a distance" — would allow for ultra-secure communication as it would alert a sender as soon as their message has been intercepted, and it could not be copied without breaking the entanglement that allows the message to send in the first place.

In 2015, a team from UNIGE led by Mikael Afzelius, senior lecturer in the Department of Applied Physics, successfully stored a qubit carried by a photon for 0.5 milliseconds in a crystal. The photon transferred its quantum state to the atoms of the crystal before it disappeared. However, the results showed that the phenomenon did not last long enough to build the larger network of crystals required to build a vast communications network.

The new 20-millisecond milestone, however, could be just the breakthrough Afzelius' team was looking for. "This is a world record for a quantum memory based on a solid-state system, in this case a crystal. We have even managed to reach the 100 millisecond mark with a small loss of fidelity," Azfelius said.

To read more, click here.