Researchers at Princeton University discovered that a material known as a topological insulator, made from the elements bismuth and bromine, exhibits specialized quantum behaviors normally seen only under extreme experimental conditions of high pressures and temperatures near absolute zero. The finding opens up a new range of possibilities for the development of efficient quantum technologies, such as spin-based, high-energy-efficiency electronics.

Physicists have observed novel quantum effects in a topological insulator at room temperature for the first time. This breakthrough came when scientists from Princeton University explored a topological material based on the element bismuth. The study was published as the cover article of the October issue of the journal Nature Materials.

 While scientists have used topological insulators to demonstrate quantum effects for more than a decade, this experiment is the first time these effects have been observed at room temperature. Inducing and observing quantum states in topological insulators typically requires temperatures around absolute zero, which is equal to minus 459 degrees Fahrenheit (or -273 degrees Celsius).
 

This finding opens up a new range of possibilities for the development of efficient quantum technologies, such as spin-based electronics, which have the potential to replace many current electronic systems with substantially higher energy efficiency.

To read more, click here.