Engineers at MIT and the University of Tokyo have produced centimeter-scale structures, large enough for the eye to see, that are packed with hundreds of billions of hollow aligned fibers, or nanotubes, made from hexagonal boron nitride.
Hexagonal boron nitride, or hBN, is a single-atom-thin material that has been coined "white graphene" for its transparent appearance and its similarity to carbon-based graphene in molecular structure and strength. It can also withstand higher temperatures than graphene, and is electrically insulating, rather than conductive. When hBN is rolled into nanometer-scale tubes, or nanotubes, its exceptional properties are significantly enhanced.
The team's results, published today in the journal ACS Nano, provide a route toward fabricating aligned boron nitride nanotubes (A-BNNTs) in bulk. The researchers plan to harness the technique to fabricate bulk-scale arrays of these nanotubes, which can then be combined with other materials to make stronger, more heat-resistant composites, for instance to shield space structures and hypersonic aircraft.
To read more, click here.