The long-term transformation towards renewable energies is inconceivable without modern energy storage technologies. These include batteries, in which electricity is temporarily stored in the form of chemical energy.
Essential for their efficiency is the availability of suitable catalysts that allow the associated chemical reactions to proceed in an optimized manner. Scientists in Dresden have now taken a closer look at the zinc-air battery, a well-known type of battery that is nowadays mainly used as button cells, for example in hearing aids. To this end, they have developed a novel catalyst with the base metal zirconium. It can replace platinum, the precious metal most commonly applied as a catalyst to date, and still transform the battery into a powerhouse.
The new catalyst significantly improves the battery's charging and discharging performance. It is also very durable: after 130 hours of operation, the test battery still retained 92 percent of its original current.
"This is an excellent value considering that we are still in the early development stages," says Dr. Agnieszka Kuc from the Institute of Resource Ecology at Helmholtz-Zentrum Dresden-Rossendorf (HZDR). She explores the chemical-physical properties of battery catalysts.
To read more, click here.