Scientists think that the performance of quantum computers could be improved by using hypothesized phases of matter known as non-Abelian states, which have the potential to encode information in an error-resistant way. But realizing a material that could host such states typically requires a powerful magnetic field, which would hinder device integration. Now three teams have predicted that non-Abelian states can form in certain semiconductor structures without a magnetic field [1–3]. If this prediction is confirmed experimentally, it could lead to more reliable quantum computers that can execute a wider range of tasks.
To read more, click here.