Caltech scientists have developed a method driven by machine learning that allows them to accurately measure the mass of individual particles and molecules using complex nanoscale devices. The new technique opens the possibility of using a variety of devices for the measurement of mass and, therefore, the identification of proteins, and could pave the way to determining the sequence of the complete proteome, the collection of all the proteins in an organism.
Proteins are the engines of living systems. Which proteins are made, where, and in what amounts can provide important information about the health of systems, clues as to what happens in the case of disease, and potential approaches to fighting disease. But scientists do not yet have a way of characterizing entire proteomes.
"We're now talking about mass spectrometry at the single molecule level; the ability to look at entire proteins in real time without chopping them up," says Michael Roukes, the Frank J. Roshek Professor of Physics, Applied Physics, and Bioengineering and an author of a paper in the journal Nature Communications that describes the new technique. "If we have a single-molecule technique that has high enough throughput so we can measure millions of proteins within a reasonable time, then we can actually understand the complete proteome of organisms, including humans."
That would be the Holy Grail of biology.
To read more, click here.